• Springe zu WISTA-Standorte
  • Springe zu Hauptmenü
  • Springe zu Seiteninhalt
WISTA Logo
  • WISTA
  • WISTA.Plan
  • WISTA.Service
  • Adlershof
  • Charlottenburg
  • Südwest
  • Marzahn
WISTA direkt
Suche
  • de
  • en
  • WISTA Logo
  • Über uns
    • Mission / Management
      • Unternehmens­profil
      • Team
      • Aufsichtsrat / Beirat / Young Professionals
      • Jahresberichte
      • Ausschreibungen / Vergabe
    • Nachhaltigkeit / Diversity
    • Tochter­firmen
      • WISTA.Plan
      • WISTA.Service
    • Anfahrt
  • Aktuelles
    • Übersicht
    • News
    • Termine / Veranstaltungen
      • Diversity Conference Adlershof
    • Social Media Wall
    • Presse
    • Potenzial Magazin
    • Adlershof Journal
    • Downloads
    • Redaktion
  • Services
    • Alle Service­angebote der WISTA
    • ​Gründungs­programme / Coworking
      • Gründungswerkstatt Adlershof
    • Netzwerke / Kooperationen
    • Talent­förderung / Personal­entwicklung
    • Veranstaltungs- und Besucher­dienst
    • Gesundheits­netzwerk
  • Projekte
    • Fokusthemen
    • Team Innovation
  • Orte
    • Übersicht
    • Technologie­park Adlershof
    • Innovations­zentrum CHIC Charlottenburg
    • Innovations­campus FUBIC Südwest
    • CleanTech­ Business Park Marzahn
    • Gewerbehöfe 2.0
    • Innovationskorridor Berlin-Lausitz
    • Geschäftsstelle Zukunftsorte
  • Immobilien
    • Aktuelle Immobilien­angebote der WISTA
    • ST3AM Arbeitswelten / Coworking
    • Gebäude-Management
  • Talente
    • Übersicht
    • WISTA als Arbeitgeber
      • Stellenangebote
      • Mitarbeitende im Porträt
    • WISTA Academy
    • Förderung / Nachwuchs
  • Blog
  • WISTA
  • WISTA.Plan
  • WISTA.Service
  • Adlershof
  • Charlottenburg
  • Südwest
  • Marzahn
WISTA direkt

Aktuelles

  • Übersicht
  • News
  • Termine / Veranstaltungen
  • Social Media Wall
  • Presse
  • Potenzial Magazin
  • Adlershof Journal
  • Downloads
  • Redaktion
  • WISTA
  • Aktuelles
19. Mai 2017

Dreidimensionales Graphen

Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind

Bild: HZB
REM-Aufnahmen von 3D-Graphen mit unterschiedlichen Porengrößen (a,b,c, Strich in a entspricht 1μm). Dadurch lassen die optischen Eigenschaften (d,e,f) präzise einstellen. Bild: HZB

Eine internationale Forschergruppe hat an der Infrarot-Beamline IRIS am Elektronenspeicherring BESSY II erstmals die optischen Eigenschaften von dreidimensionalem nanoporösen Graphen untersucht. Die Experimente zeigen, dass sich die plasmonischen Anregungen (Schwingungen der Ladungsdichte) in diesem neuen Material durch Porengröße und das Einbringen von Fremdatomen präzise steuern lassen. Dies könnte die Herstellung von hochempfindlichen chemischen Sensoren ermöglichen.

Kohlenstoff ist ein sehr vielseitiges Element. Es bildet nicht nur Diamanten, Graphit und Kohle, sondern kann sich auch in der Ebene zu einem flachen Netz mit sechseckigen Maschen verbinden, dem Graphen. Dieses aus nur einer Atomlage bestehende Material besitzt eine Reihe extremer Eigenschaften, es ist hochleitfähig, optisch transparent und mechanisch sowohl flexibel als auch belastbar. Für die Entdeckung dieser exotischen Kohlenstoff-Form erhielten André Geim und Konstantin Novoselov 2010 den Nobelpreis für Physik. Und erst vor kurzem ist es einem japanischen Team gelungen, zweidimensionales Graphen zu einer dreidimensionalen Architektur mit nanometergroßen Poren aufeinanderzustapeln.

Plasmonen nach Wunsch

Ein Forscherteam unter Federführung einer Gruppe der Universität Sapienza in Rom hat nun erstmals die optischen Eigenschaften von 3D-Graphen eingehend an BESSY II untersucht. Das Team konnte aus den gemessenen Daten ermitteln, wie sich Ladungsdichteschwingungen, so genannte Plasmonen, im dreidimensionalen Graphen ausbreiten. Dabei stellten sie fest, dass diese Plasmonen den gleichen Gesetzmäßigkeiten wie in 2D-Graphen folgen. Die Frequenz der Plasmonen lässt sich im 3D-Graphen jedoch sehr genau kontrollieren: entweder durch Einbringen von Fremdatomen (Dotierung) oder über die Größe der Nanoporen, oder auch, indem man bestimmte Moleküle gezielt an das Graphen anlagert. Damit könnte sich das neuartige Material auch für die Herstellung von spezifischen chemischen Sensoren eignen, schreiben die Autoren in Nature Communications. Es ist außerdem interessant als Elektrodenmaterial für den Einsatz in Solarzellen.


Vorteile der IRIS-Beamline genutzt

Für ihre Untersuchungen haben die Forscher die IRIS-Beamline an der Berliner Synchrotronquelle BESSY II genutzt. Dort steht breitbandige Infrarotstrahlung zur Verfügung, was insbesondere die spektroskopische Untersuchung von neuartigen Materialien mit Terahertz-Strahlen ermöglicht. „Durch den low-Alpha Modus, eine besondere Betriebsform des BESSY II-Speicherrings, war es möglich, die optische Leitfähigkeit von dreidimensionalem Graphen mit besonders hohem Signal-zu-Rausch Verhältnis zu messen. Mit Standard-Methoden ist dies vor allem im Terahertz-Bereich kaum möglich. Gerade dieser Bereich ist aber wichtig, um entscheidende physikalische Eigenschaften zu beobachten“, sagt Dr. Ulrich Schade, Gruppenleiter an der Infrarot-Beamline. 


Die Arbeit wurde in Nature Communications (2017) publiziert: „Terahertz and mid-infrared plasmons in three-dimensional nanoporous graphene“; Fausto D’Apuzzo, Alba R. Piacenti, Flavio Giorgianni, Marta Autore, Mariangela Cestelli Guidi,Augusto Marcelli, Ulrich Schade, Yoshikazu Ito, Mingwei Chen & Stefano Lupi. DOI: 10.1038/ncomms14885

Kontakt

Helmholtz-Zentrum für Materialien und Energie

Dr. Ulrich Schade
Institut Methoden der Materialentwicklung
Tel.: (030) 8062-13449
ulrich.schade(at)helmholtz-berlin.de

Pressekontakt
Dr. Antonia Rötger
Tel.: (030) 8062-43733
Fax: (030) 8062-42998
antonia.roetger(at)helmholtz-berlin.de

Außeruniversitäre Forschung Mikrosysteme / Materialien

Meldungen dazu

  • Schichtstrukturen zweier PVDF/PLLA-Mischungen in der Nano-IR-Bildgebung © TU Eindhoven/HZB

    Neues Verfahren für bessere Thermokunststoffe

    Forschungsteam an BESSY II konnte Leistungsfähigkeit von umweltfreundlichen Materialien steigern
  • Graphen Terahertz-Pulse © HZDR/Juniks

    For­schungs­team de­mons­triert Steu­er­me­cha­nis­mus für Graphen

    Das Zu­kunfts­ma­te­ri­al für elektronische Bauelemente ist besonders für Anwendungen im Terahertz-Bereich geeignet
  • Grafik: HZB

    Auf dem Weg zu Biosensoren mit Graphen

    Extrem leitfähig, völlig transparent und mechanisch wie chemisch äußerst belastbar

Verknüpfte Einrichtungen

  • Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Elektronenspeicherring BESSY II
  • LinkedInmitteilen0
  • Facebookteilen0
  • WhatsAppteilen0
  • E-Mail
  • © WISTA Management GmbH
  • Impressum
  • Datenschutz
  • Barrierefreiheit
  • Kontakt
  • Karriere
  • Presse
  • Newsletter
  • Social-Media-Übersicht
  • Werbung
Mitglied bei:
Zukunftsorte Logo