• Springe zu WISTA-Standorte
  • Springe zu Hauptmenü
  • Springe zu Seiteninhalt
WISTA Logo
  • WISTA
  • WISTA.Plan
  • WISTA.Service
  • Adlershof
  • Charlottenburg
  • Südwest
  • Marzahn
WISTA direkt
Suche
  • de
  • en
  • WISTA Logo
  • Über uns
    • Mission / Management
      • Unternehmens­profil
      • Team
      • Aufsichtsrat / Beirat / Young Professionals
      • Jahresberichte
      • Ausschreibungen / Vergabe
    • Nachhaltigkeit / Diversity
    • Tochter­firmen
      • WISTA.Plan
      • WISTA.Service
    • Anfahrt
  • Aktuelles
    • Übersicht
    • News
    • Termine / Veranstaltungen
      • Diversity Conference Adlershof
    • Social Media Wall
    • Presse
    • Potenzial Magazin
    • Adlershof Journal
    • Downloads
    • Redaktion
  • Services
    • Alle Service­angebote der WISTA
    • ​Gründungs­programme / Coworking
      • Gründungswerkstatt Adlershof
    • Netzwerke / Kooperationen
    • Talent­förderung / Personal­entwicklung
    • Veranstaltungs- und Besucher­dienst
    • Gesundheits­netzwerk
  • Projekte
    • Fokusthemen
    • Team Innovation
  • Orte
    • Übersicht
    • Technologie­park Adlershof
    • Innovations­zentrum CHIC Charlottenburg
    • Innovations­campus FUBIC Südwest
    • CleanTech­ Business Park Marzahn
    • Gewerbehöfe 2.0
    • Innovationskorridor Berlin-Lausitz
    • Geschäftsstelle Zukunftsorte
  • Immobilien
    • Aktuelle Immobilien­angebote der WISTA
    • ST3AM Arbeitswelten / Coworking
    • Gebäude-Management
  • Talente
    • Übersicht
    • WISTA als Arbeitgeber
      • Stellenangebote
      • Mitarbeitende im Porträt
    • WISTA Academy
    • Förderung / Nachwuchs
  • Blog
  • WISTA
  • WISTA.Plan
  • WISTA.Service
  • Adlershof
  • Charlottenburg
  • Südwest
  • Marzahn
WISTA direkt

Aktuelles

  • Übersicht
  • News
  • Termine / Veranstaltungen
  • Social Media Wall
  • Presse
  • Potenzial Magazin
  • Adlershof Journal
  • Downloads
  • Redaktion
  • WISTA
  • Aktuelles
20. Dezember 2016

Brennstoffzellen mit PFIA-Membranen

Experimente an BESSY II zum Wassermanagement geben Hinweise auf Optimierung von Brennstoffzellen

PFIA-Moleküle. Bild: Heike Cords/HZB
Die PFIA-Moleküle ordnen sich mit ihrem wasserabweisenden Rückgrat (schwarze Linie) so an, dass die wasserfreundlichen Seitenketten zueinander zeigen und nanometergroße Wasserkanäle bilden: Jede Seitenkette besitzt dabei zwei Andockstellen (gelbe und rote Kreise) für Wasserstoff-Ionen (H+). Diese Andockstellen bestehen aus Säuregruppen, die in der Lupe gezeigt werden. Bild: Heike Cords/HZB

Ein Team am Helmholtz-Zentrum Berlin (HZB) und eine Forschergruppe der Firma 3M haben untersucht, wie eine Protonen-Austauschmembran aus so genannten PFIA-Molekülen (Perfluoroimid-Säure) funktioniert. Mit Experimenten an der Infrarot-Beamline an der Synchrotronquelle BESSY II konnten sie zeigen, wie PFIA-Moleküle selbst bei geringer Feuchtigkeit Wasser einlagern und transportieren können. Dies erklärt, warum PFIA-Membranen – anders als die bislang am meisten genutzten NAFIONTM-Membranen – auch bei höheren Temperaturen und trockenen Bedingungen gut funktionieren.

Brennstoffzellen wandeln die chemische Energie von Wasserstoff oder Methan in elektrische Energie um. Die Technologie ist nicht nur effizient, sondern auch sauber, denn als „Abgas“ entsteht nur Wasser. Im Kern besteht die Brennstoffzelle aus einer Protonen-Austauschmembran, die nur die winzigen Wasserstoff-Ionen (Protonen) durchlässt, die zur Kathode wandern. Sauerstoff-Atome und Wasserstoffatome blockiert sie. Bislang werden vor allem NAFIONTM-Membranen eingesetzt, die aber nur bei einer bestimmten Feuchtigkeit und Temperaturen unterhalb von etwa 90°C funktionieren. Dies begrenzt jedoch bisher den Einsatzbereich von Brennstoffzellen.

Wassermanagement in Brennstoffzellen

Daher wird nach Alternativen gesucht. Seit einiger Zeit hat die Firma 3M eine preisgünstige Protonen-Austauschmembran, entwickelt, die mit PFIA abgekürzt wird: PFIA steht für Perfluoroimid-Säure. PFIA-Membranen können auch bereits in Brennstoffzellen eingesetzt werden. Sowohl NAFIONTM- als auch PFIA-Moleküle besitzen ein wasserabweisendes “Rückgrat“, an das wasserliebende Seitenketten angeheftet sind. Während die Seitenketten bei NAFIONTM nur eine Andockstelle für Protonen bieten, besitzen die PFIA-Seitenketten zwei solcher Andockstellen. Dadurch gibt es je Seitenkette einen zusätzlichen Platz für ein Proton. Außerdem können PFIA-Moleküle von selbst nanometergroße Kanäle bilden, in denen Wasser gebunden oder befördert werden kann. Wie aber dieses Wassermanagement in einer PFIA-Membran genau abläuft, war bisher nicht bekannt. Dabei ist dieses Wassermanagement  von entscheidender Bedeutung für die Leistungsfähigkeit einer Brennstoffzelle, die nie zu feucht aber auch niemals zu trocken werden darf.

Infrarotspektroskpie und statistische Analysen

Nun hat eine Gruppe am HZB erstmals PFIA-Proben der Firma 3M bei unterschiedlichen Feuchtigkeits- und Temperaturbedingungen untersucht. Sie kombinierten dafür Infrarot-Spektroskopie-Methoden an BESSY II und werteten die Daten mit aufwändigen statistischen Analysen aus. “Wir wollten das Verhalten von Wassermolekülen und Wasser im Inneren der Nanokanäle der Membran besser verstehen, vor allem beim Übergang zu trockeneren Bedingungen”, erklärt Dr. Ljiljana Puskar, die Erstautorin der Arbeit, die nun in der Fachzeitschrift Physical Chemistry/Chemical Physics erschienen ist. 

PFIA bildet ein Netz für Wassermoleküle

Die experimentellen Daten belegen sehr große Unterschiede im Wassermanagement zwischen NAFIONTM und PFIA, insbesondere bei geringer Feuchtigkeit: “Wir können deutlich sehen, dass PFIA sowohl bei der Rückhaltung von Wasser als auch bei der Aufnahme von Wasser besser funktioniert“, sagt Puskar. Die Wissenschaftlerinnen und Wissenschaftler konnten sogar entschlüsseln, wie die PFIA-Membran Wasser speichert: Denn durch die zusätzlichen Andockstellen für Protonen an den Seitenketten lagern sich dort ebenfalls Wassermoleküle an und bauen über Wasserstoffbrückenbindungen ein Netz auf, das weitere Wassermoleküle einbindet.

Ausblick: operando Messungen an der Infrarot-Beamline von BESSY II

Diese Ergebnisse helfen dabei, solche Membranen zu optimieren, so dass Brennstoffzellen auch bei höheren Temperaturen und geringerer Feuchtigkeit noch effizient arbeiten und breiter eingesetzt werden können. „In dieser Arbeit haben wir zusammen mit 3M einen großen Erkenntnisfortschritt erreicht, was das Wassermanagement in alternativen Protonen-Austauschmembranen angeht. Wir werden an den Infrarot-Beamlines von BESSY II die experimentellen Möglichkeiten noch um operando Infrarot-Spektroskopie und  Mikroskopie erweitern, um ein breites Spektrum von Energie-Materialien unter Betriebsbedingungen zu untersuchen“, sagt Prof. Dr. Emad Aziz, der das HZB-Institut für Methoden der Materialentwicklung leitet.

Publikation: INFRARED DYNAMCIS STUDY OF THERMALLY TREATED PERFLUOROIMIDE ACID PROTON EXCHANGE MEMBRANES; L. Puskar, E. Ritter, U. Schade, M. Yandrasits, S. J. Hamrock, M. Schaberg, and E. F. Aziz.  Phys. Chem. Chem. Phys., 2017, DOI: 10.1039/C6CP06627E

 

Kontakt:

Helmholtz-Zentrum Berlin für Materialien und Energie
Institut Methoden der Materialentwicklung

Dr. Ljiljana Puskar
Tel.: (030) 8062-14739
E-Mail: ljiljana.puskar(at)helmholtz-berlin.de

Prof. Dr. Emad Flear Aziz
Tel.: (030) 8062-15003
E-Mail: emad.aziz(at)helmholtz-berlin.de

Pressekontakt:
Dr. Antonia Rötger
Tel.: (030) 8062-43733
Fax: (030) 8062-42998
E-Mail: antonia.roetger(at)helmholtz-berlin.de

Außeruniversitäre Forschung Erneuerbare Energien Mikrosysteme / Materialien

Verknüpfte Einrichtungen

  • Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Elektronenspeicherring BESSY II
  • LinkedInmitteilen0
  • Facebookteilen0
  • WhatsAppteilen0
  • E-Mail
  • © WISTA Management GmbH
  • Impressum
  • Datenschutz
  • Barrierefreiheit
  • Kontakt
  • Karriere
  • Presse
  • Newsletter
  • Social-Media-Übersicht
  • Werbung
Mitglied bei:
Zukunftsorte Logo