• Skip to WISTA Sites
  • Skip to Main menu
  • Skip to Page content
WISTA Logo
  • WISTA
  • WISTA.Plan
  • WISTA.Service
  • Adlershof
  • Charlottenburg
  • South West
  • Marzahn
WISTA direkt
Search
  • de
  • en
  • WISTA Logo
  • About
    • Mission / Management
      • Company Profile
      • Team
      • Boards
      • Annual Reports
      • Invitations to tender
    • Sustainability / Diversity
    • Subsidiaries
    • Directions
  • News / Press
    • Overview
    • News
    • Events / Calendar
      • Diversity Conference Adlershof
    • Social Media Wall
    • Press
    • Magazine "Potenzial"
    • Adlershof Journal
    • Downloads
  • Services
    • All WISTA services
    • Business programmes
      • Adlershof Founder's Lab
    • Networks / Cooperations
    • Talent promotion / Recruiting
    • Event and Visitors Service
  • Projects
    • Focus Topics
    • Team Innovation
  • Sites
    • Overview
    • Technology Park Adlershof
    • Innovation Centre CHIC Charlottenburg
    • Innovation Campus FUBIC South West
    • CleanTech Business Park Marzahn
    • Business Office “Zukunftsorte”
  • Real Estate
    • Current Real Estate Offers
    • ST3AM Working Environments
    • Facility Management
  • Talents
    • Overview
    • WISTA as Employer
      • Jobs
    • WISTA Academy
      • Overview
    • Talent Promotion / Training
  • WISTA
  • WISTA.Plan
  • WISTA.Service
  • Adlershof
  • Charlottenburg
  • South West
  • Marzahn
WISTA direkt

News / Press

  • Overview
  • News
  • Events / Calendar
  • Social Media Wall
  • Press
  • Magazine "Potenzial"
  • Adlershof Journal
  • Downloads
  • Editorial Staff
  • WISTA
  • News / Press
21. February 2025

Perovskite solar cells under stress test

Research team identifies thermal stresses as the key to long-term stability

Visualised test scenario
In the experiment, perovskite solar cells were repeatedly cooled from room temperature to -150°C and then heated up to +150°C. The researchers investigated how microstructures in the perovskite layer and interactions with neighbouring layers change over the course of the cycles. © Li Guixiang

Perovskite solar cells are highly efficient and low cost in production. However, they still lack stability over the decades under real weather conditions. An international research collaboration led by Prof. Antonio Abate has now published a perspective on this topic in the journal Nature Reviews Materials. They explored the effects of multiple thermal cycles on microstructures and interactions between different layers of perovskite solar cells. They conclude that thermal stress is the decisive factor in the degradation of metal-halide perovskites. Based on this, they derive the most promising strategies to increase the long-term stability of perovskite solar cells.

Perovskites are a wide class of materials with semiconducting properties suitable for energy conversion in a solar cell: the best of them, the metal-halide perovskites, already deliver efficiencies of up to 27%. The production of such thin-film solar cells requires particularly little material and energy, so solar energy could become considerably cheaper. However, when used outdoors, solar modules should provide a nearly stable yield for at least 20 to 30 years. And here, there is still a lot of room for improvement in perovskite materials.

Results from several years

An international research collaboration led by Prof. Antonio Abate has now published the results of several years of work in a review paper in the prestigious journal Nature Reviews Materials. Together with a team led by Prof. Meng Li, Henan University, China, and other partners in Italy, Spain, UK, Switzerland and Germany, they show that thermal stress is the decisive factor in the degradation of metal-halide perovskites.

Harsh conditions in “real life”

‘When used outdoors, solar modules are exposed to the weather and the seasons,’ says Abate. While encapsulation can effectively protect the cells from moisture and atmospheric oxygen, they are still exposed to quite large temperature variations day and night and throughout the year. Depending on the geographical conditions, temperatures inside the solar cells can range from minus 40 degrees Celsius to plus 100 degrees Celsius (in the desert, for example).

Effects of extreme temperature differences studied

To simulate this, the perovskite solar cells in the study were exposed to much more extreme temperature differences in several cycles: From minus 150 degrees Celsius to plus 150 degrees Celsius, and again and again. Dr Guixiang Li (then a postdoc at HZB, now a professor at Southeast University, China) investigated how the microstructure within the perovskite layer changed during the cycles and to what extent the interactions with the neighbouring layers were also affected by the temperature cycles.

Thermal stress inside the perovskite film and in between layers

Together, these factors affect the performance of the cell. In particular, the temperature cycles caused thermal stress, i.e. stress both within the perovskite thin film and between the different adjacent layers: ‘In a perovskite solar cell, layers of very different materials need to be in perfect contact; unfortunately, these materials often have quite different thermal behaviours,’ explains Abate. For example, plastics tend to shrink when heated, while inorganic materials tend to expand. This means that in each cycle the contact between the layers becomes worse. What is more, also local phase transitions and diffusion of elements into adjacent layers have been observed.

Most promising strategy

From this, the research teams have derived a strategy to increase the long-term stability of perovskite solar cells. ‘Thermal stress is the key,’ says Abate. The main thing, therefore, is to make the perovskite structures and the adjacent layers more stable against thermal stress, for example by increasing the crystalline quality, but also by using suitable buffer layers. The scientists highlight the importance of uniform test protocols for evaluating stability under temperature cycling and propose an approach to facilitate comparison between different studies.

Publication:

Nature Reviews Materials (2025): Resilience Pathways for Halide Perovskite Photovoltaics Under Temperature Cycling
Luyan Wu (吴录艳), Shuaifeng Hu (胡帅锋), Feng Yang (杨枫), Guixiang Li (李桂香), Junke Wang (王竣可), Weiwei Zuo (左巍巍), José J. Jerónimo-Rendon, Silver-Hamill Turren-Cruz, Michele Saba, Michael Saliba, Mohammad Khaja Nazeeruddin, Jorge Pascual, Meng Li (李萌), Antonio Abate
DOI: 10.1038/s41578-025-00781-7

Contact:

Helmholtz-Zentrum Berlin für Materialien und Energie
Department Novel Materials and interfaces for photovoltaic solar cells

Prof. Dr. Antonio Abate
+49 30 8062-14380
antonio.abate(at)helmholtz-berlin.de

Press Officer:
Dr. Antonia Rötger
+49 30 8062-43733
antonia.roetger(at)helmholtz-berlin.de

 

Press release HZB, 21 February 2025

Research Renewable Energies Microsystems / Materials Grand Challenges

Related News

  • Perovskite film under scanning electron microscope © HZB

    A simpler way to inorganic perovskite solar cells

    Annealing in ambient air does not have an adverse effect on the optoelectronic properties of the semiconductor film, but actually results in fewer defects
  • perovskite layer model © G. Li/HZB

    Stability of perovskite solar cells reaches next milestone

    With an improved material structure, a team from HZB achieves efficiencies of up to 24.6%
  • Tag cloud Perovskite research © HZB

    A Wiki for Perovskite Solar Cell Research

    An international team of experts has designed an open source database to systematically record findings on perovskite semiconductors
  • perovskite layer, HZB Adlershof Berlin, © M. Künsting/HZB

    HZB researchers provide new insights into lead-free perovskite solar cells

    How fluoride additives improve quality
  • Schematic: Coating with material ink © Jinzhao Li / HZB

    The perfect recipe for efficient perovskite solar cells

    HZB team improved the composition of material inks for the simple and cost-effective production of solar cells
  • Structure of FASnI3:PEACl films © Meng Li/HZB

    On the road to non-toxic and stable perovskite solar cells

    International cooperation led by HZB has developed new materials with tin instead of lead

Related Institutions

  • Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Elektronenspeicherring BESSY II
  • LinkedInshare0
  • Facebookshare0
  • WhatsAppshare0
  • E-Mail
  • © WISTA Management GmbH
  • Legal Notice
  • Privacy Policy
  • Contact
  • Career
  • Press
  • Social Media Guide
Member of:
Zukunftsorte Logo