• Skip to Page content
  • Skip to WISTA Sites
  • Skip to Main menu
WISTA
  • WISTA
  • WISTA.Plan
  • WISTA.Service
  • Adlershof
  • Charlottenburg
  • South West
  • Marzahn
  • WISTA direkt
  • Search
    • de
    • en
  • WISTA, Go to homepage
  • About
    • Mission / Management
      • Company Profile
      • Team
      • Boards
      • Annual Reports
      • Invitations to tender
      • Business Office Zukunftsorte
    • Sustainability / Diversity
    • Subsidiaries
    • Directions
  • News / Press
    • Overview
    • News
    • Events / Calendar
    • Social Media Wall
    • Press
    • Magazine "Potenzial"
    • Adlershof Journal
    • Downloads
  • Services
    • All WISTA services
    • Business programmes
      • Adlershof Founder's Lab
    • Networks / Cooperations
    • Talent promotion / Recruiting
    • Event and Visitors Service
  • Projects
    • Focus Topics
    • Team Innovation
  • Sites
    • Overview
    • Technology Park Adlershof
    • Innovation Centre CHIC Charlottenburg
    • Innovation Campus FUBIC South West
    • CleanTech Business Park Marzahn
    • House of Games
    • Zukunftsorte Berlin
  • Real Estate
    • Current Real Estate Offers
    • ST3AM Working Environments
    • Facility Management
  • Talents
    • Overview
    • WISTA as Employer
      • Jobs
    • WISTA Academy
    • Talent Promotion / Training
  • WISTA
  • WISTA.Plan
  • WISTA.Service
  • Adlershof
  • Charlottenburg
  • South West
  • Marzahn
WISTA direkt

News / Press

  • Overview
  • News
  • Events / Calendar
  • Social Media Wall
  • Press
  • Magazine "Potenzial"
  • Adlershof Journal
  • Downloads
  • Editorial Staff
  • WISTA
  • News / Press
15. September 2025

Porous Radical Organic framework improves lithium-sulphur batteries

Research team develops new COF material that can significantly increase battery performance and durability

Material structure diagram
On the pores of this radical organic framework, polysulphides are firmly trapped. They are thus prevented to leak back into the battery, shortening the battery service life. © Sijia Cao / HZB

A team led by Prof. Yan Lu, HZB, and Prof. Arne Thomas, Technical University of Berlin, has developed a material that enhances the capacity and stability of lithium-sulphur batteries. The material is based on polymers that form a framework with open pores (known as radical-cationic covalent organic frameworks or COFs). Catalytically accelerated reactions take place in these pores, firmly trapping polysulphides, which would shorten the battery life. Some of the experimental analyses were conducted at the BAMline at BESSY II.

Crystalline framework structures made of organic polymers are a particularly interesting class of materials. They are characterised by their high porosity, comparable to a sponge, but with pores measuring only a few micrometres at most. These materials can exhibit special functionalities, which make them interesting for certain applications in electrochemical energy storage devices. For example, they could act as ‘hosts’ for sulphur compounds such as polysulphides in the electrodes of lithium-sulphur batteries. The idea is that the polysulphides could bind to the inner surfaces of pores in the COF structures and react there to generate elemental sulphur again. However, this has not yet worked properly.

Newly developed COF

A team led by Prof. Yan Lu (HZB) and Prof. Arne Thomas (Technical University of Berlin) has now demonstrated a major advance with a newly developed COF material. By incorporating certain 'radicals', the team achieved a catalytic acceleration of the desired reaction in the pores.

The material consists of tetrathiafulvalene units ([TTF]2•+) and trisulphide radical anions (S3•-) connected via benzothiazole (R-TTF•+-COF). This significantly improves the catalytic activity and electrical conductivity of the COF. ‘Unpaired electrons play an important role in the micro/mesopores of COFs,’ explains Yan Lu: ‘They contribute to delocalised π orbitals, which facilitates charge transfer between the layers and thus improves the catalytic properties.’

Combination of experiments

In a highly complex study, the team has elucidated the central role of radical motifs in catalysing the sulphur reduction reactions.

For the study, the researchers investigated the COF materials in Li-S battery cells using solid-state nuclear magnetic resonance (ssNMR) spectroscopy, electron spin resonance (EPR) spectroscopy, and also performed in situ X-ray tomography at the BAMline at BESSY II to characterise the pores inside more precisely. They combined these experimental results with theoretical calculations to interpret the results. ‘This allowed us to show that the radical cations [TTF]2•+ act as catalytic centres that bind LiPSs and facilitate the elongation and cleavage of the S−S bonds,’ says Sijia Cao, a PhD student in Yan Lu's team.

Significant improvement

The result is amazing: the performance of the Li-S battery improves significantly with the use of the new R-TTF•+-COF material. The service life of Li-S batteries thus increases to over 1,500 cycles with a capacity loss of only 0.027 % per cycle. This durability of Li-S batteries has not yet been achieved with COF materials or other purely organic catalysts. Typically, Li–S batteries exhibit less than 1,000 cycles, according to reports from the past few years.

‘Integrating such radical scaffold structures into lithium-sulphur batteries shows great promise,’ says Yan Lu. In addition, there is a wide range of possibilities for further optimisation. The electronic properties of the scaffold and the catalytic activity change depending on which molecules are used as radicals. Nevertheless, further research is needed into COFs with stable radical building blocks that are specifically tailored for catalysing sulphur reduction reactions.

Publication:

Journal of the American Chemical Society (2025): A Radical-Cationic Covalent Organic Framework to Accelerate Polysulfide Conversion for Long-Durable Lithium-Sulfur Batteries
Sijia Cao, Pouya Partovi-Azar, Jin Yang, Dongjiu Xie, Timo Held, Gianluca Marcozzi, Joseph E. McPeak, Wei Zhang, Xia Zhang, Markus Osenberg, Zdravko Kochovski, Changxia Li, Daniel Sebastiani, Johannes Schmidt, Moritz Exner, Ingo Manke, Arne Thomas, Wenxi Wang, and Yan Lu
DOI: 10.1021/jacs.5c09421

Contact:

Helmholtz-Zentrum Berlin für Materialien und Energie
Institute Electrochemical Energy Storage
CE-IEES-office(at)helmholtz-berlin.de

Prof. Dr. Yan Lu
+49 30 8062-43191
yan.lu(at)helmholtz-berlin.de

Dr. Antonia Rötger
Press Officer
+49 30 8062-43733
antonia.roetger(at)helmholtz-berlin.de

 

Press release HZB, 15.09.2025

Research Grand Challenges Microsystems / Materials

Related News

  • HZB team investigates lithium-sulphur batteries in real-time

    Findings are helpful to design compact Li-S batteries with a high energy density
  • Photo and X-ray image of a lithium-sulfur pouch cell

    Lithium-sulphur pouch cells investigated at BESSY II

    HZB team is working on optimising this promising battery type
  • Better cathode materials for Lithium-Sulphur-Batteries

    An HZB team led by Prof. Dr. Yan Lu is working on efficient and environmentally friendly electricity storage media

Related Institutions

  • Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Elektronenspeicherring BESSY II

Share this page

  • © WISTA Management GmbH
  • Legal Notice
  • Privacy Policy
  • Contact
  • Career
  • Press
  • Social Media Guide
Member of:
Zukunftsorte Logo