• Skip to WISTA Sites
  • Skip to Main menu
  • Skip to Page content
WISTA Logo
  • WISTA
  • WISTA.Plan
  • WISTA.Service
  • Adlershof
  • Charlottenburg
  • South West
  • Marzahn
WISTA direkt
Search
  • de
  • en
  • WISTA Logo
  • About
    • Mission / Management
      • Company Profile
      • Team
      • Boards
      • Annual Reports
      • Invitations to tender
    • Sustainability / Diversity
    • Subsidiaries
    • Directions
  • News / Press
    • Overview
    • News
    • Events / Calendar
      • Diversity Conference Adlershof
    • Social Media Wall
    • Press
    • Magazine "Potenzial"
    • Adlershof Journal
    • Downloads
  • Services
    • All WISTA services
    • Business programmes
      • Adlershof Founder's Lab
    • Networks / Cooperations
    • Talent promotion / Recruiting
    • Event and Visitors Service
  • Projects
    • Focus Topics
    • Team Innovation
  • Sites
    • Overview
    • Technology Park Adlershof
    • Innovation Centre CHIC Charlottenburg
    • Innovation Campus FUBIC South West
    • CleanTech Business Park Marzahn
    • Business Office “Zukunftsorte”
  • Real Estate
    • Current Real Estate Offers
    • ST3AM Working Environments
    • Facility Management
  • Talents
    • Overview
    • WISTA as Employer
      • Jobs
    • WISTA Academy
      • Overview
    • Talent Promotion / Training
  • WISTA
  • WISTA.Plan
  • WISTA.Service
  • Adlershof
  • Charlottenburg
  • South West
  • Marzahn
WISTA direkt

News / Press

  • Overview
  • News
  • Events / Calendar
  • Social Media Wall
  • Press
  • Magazine "Potenzial"
  • Adlershof Journal
  • Downloads
  • Editorial Staff
  • WISTA
  • News / Press
15. March 2017

How to increase efficiencies of ultrathin CIGSe solar cells

Nanoparticles at the back help harvesting the light

Nanostructures trap the light, shows this illustration on the cover in  Advanced Optical Materials. Credit: Adv. Opt. Mat. 5/2017
Nanostructures trap the light, shows this illustration on the cover in Advanced Optical Materials. Credit: Adv. Opt. Mat. 5/2017

Ultrathin CIGSe solar cells need much less rare earth elements and energy for production. Unfortunately, they are much less efficient too. Now a team at HZB together with a group in the Netherlands has shown how to prevent the absorption loss of ultrathin CIGSe cells.  They designed  nanostructured  back contacts for light trapping and could achieve a new record value of the the short circuit current density reaching nearly the best values for thicker CIGSe-cells.

CIGSe solar cells consist of Copper, Indium, Gallium and Selenide in a chalcopyrite structure and convert light into electrical energy. Thin film CIGSe cells have reached efficiency values as high as 22.6 percent in the lab and have some advantages in comparison to the widespread silicon solar modules, among them a very short energy payback time and a reduced sensitivity to shading.

Much less Indium needed

However, the mass production of CIGSe cells may impact the supply of Indium, since it belongs to the group of rare elements. An interesting option is to make thinner CIGSe films. Whereas a typical thin film CIGSe is 2-3 micrometers thick, “ultrathin” films of below 0,5 micrometer thickness would need much less Indium for a given area. Unfortunately, this will lead to a dramatic loss of absorption and thus efficiencies of cells. 

Nanostructured back contacts plus reflector layers

The Young Investigator team Nanooptix at HZB, led by Prof. Martina Schmid, shows now how to prevent the absorption loss of ultrathin CIGSe cells.  They, together with a group of Prof. Albert Polman in the Institute for Atomic and Molecular Physics (AMOLF), Netherlands,   designed  nanostructured  back contacts consisting of a silica nanopattern on ITO for light trapping in ultrathin CIGSe cells.

Record short circuit current density

Combined with a back reflector and an anti-reflection layer, the champion cell with a CIGSe film of only 0.39 micrometer thickness shows a short circuit current density of 34.0 mA/cm2, which is, to date, the highest value in any ultrathin CIGSe cell and reaches 93% short circuit current density of record thick counterparts.  

Nanostructures improve electrical properties as well

More interestingly, the nanostructured back contacts simultaneously improve the electrical performance of the cells, causing an efficiency enhancement of 47% relative to flat cells of equal thickness. “The achievements prove that the nanostructures are able to simultaneously benefit ultrathin CIGSe solar cells from both optical  and electrical aspects” Guanchao Yin, first author of the publication, claims. “This result shows that optoelectronic nanopatterning provides a path to high efficiency cells with reduced materials consumption”, Prof. Martina Schmid says, who has now joined University of Duisburg as a professor for experimental physics. “With the Young Investigator team I could start my career and I thank HZB and Helmholtz-Association for this chance”, she says.

The work is published as a cover in Advanced Optical Materials (5, 2017): 
http://onlinelibrary.wiley.com/doi/10.1002/adom.201770026/fullOptoelectronic Enhancement of Ultrathin CuIn1–xGaxSe2 Solar Cells by Nanophotonic Contacts; Guanchao Yin, Mark W. Knight, Marie-Claire van Lare, Maria Magdalena Solà Garcia, Albert Polman, Martina Schmid
DOI: 10.1002/adom.201600637

Contact:

Helmholtz-Zentrum Berlin für Materialien und Energie

Prof. Dr. Martina Schmid
Young Investigator Group Nanooptical Concepts for PV 
Tel.: (030) 8062-43243
Email: martina.schmid(at)helmholtz-berlin.de

Dr. rer. nat. Guanchao Yin
Department Structure and Dynamics of Energy Materials
Tel.: (030) 8062-43721
Email: guanchao.yin(at)helmholtz-berlin.de

Dr. Antonia Rötger
Press Officer
Tel.: (030) 8062-43733
Fax: (030) 8062-42998
Email: antonia.roetger(at)helmholtz-berlin.de

  • LinkedInshare0
  • Facebookshare0
  • WhatsAppshare0
  • E-Mail
  • © WISTA Management GmbH
  • Legal Notice
  • Privacy Policy
  • Contact
  • Career
  • Press
  • Social Media Guide
Member of:
Zukunftsorte Logo