• Skip to WISTA Sites
  • Skip to Main menu
  • Skip to Page content
WISTA Logo
  • WISTA
  • WISTA.Plan
  • WISTA.Service
  • Adlershof
  • Charlottenburg
  • South West
  • Marzahn
WISTA direkt
Search
  • de
  • en
  • WISTA Logo
  • About
    • Mission / Management
      • Company Profile
      • Team
      • Boards
      • Annual Reports
      • Invitations to tender
    • Sustainability / Diversity
    • Subsidiaries
    • Directions
  • News / Press
    • Overview
    • News
    • Events / Calendar
      • Diversity Conference Adlershof
    • Social Media Wall
    • Press
    • Magazine "Potenzial"
    • Adlershof Journal
    • Downloads
  • Services
    • All WISTA services
    • Business programmes
      • Adlershof Founder's Lab
    • Networks / Cooperations
    • Talent promotion / Recruiting
    • Event and Visitors Service
  • Projects
    • Focus Topics
    • Team Innovation
  • Sites
    • Overview
    • Technology Park Adlershof
    • Innovation Centre CHIC Charlottenburg
    • Innovation Campus FUBIC South West
    • CleanTech Business Park Marzahn
    • House of Games
    • Business Office “Zukunftsorte”
  • Real Estate
    • Current Real Estate Offers
    • ST3AM Working Environments
    • Facility Management
  • Talents
    • Overview
    • WISTA as Employer
      • Jobs
    • WISTA Academy
    • Talent Promotion / Training
  • WISTA
  • WISTA.Plan
  • WISTA.Service
  • Adlershof
  • Charlottenburg
  • South West
  • Marzahn
WISTA direkt

News / Press

  • Overview
  • News
  • Events / Calendar
  • Social Media Wall
  • Press
  • Magazine "Potenzial"
  • Adlershof Journal
  • Downloads
  • Editorial Staff
  • WISTA
  • News / Press
21. February 2018

Hidden talents: Converting heat into electricity with pencil and paper

Helmholtz researchers use simple constituents for thermoelectric components

Sketch of experiment HZB
Pencil, paper and co-polymer varnish are sufficient for a thermoelectrical device. Sketch of the experiment. Credit: HZB

Thermoelectric materials can use thermal differences to generate electricity. Now there is an inexpensive and environmentally friendly way of producing them with the simplest of components: a normal pencil, photocopy paper, and conductive paint are sufficient to convert a temperature difference into electricity via the thermoelectric effect. This has now been demonstrated by a team at the Helmholtz-Zentrum Berlin.

The thermoelectric effect is nothing new – it was discovered almost 200 years ago by Thomas J. Seebeck. If two different metals are brought together, then an electrical voltage can develop if one metal is warmer than the other. This effect allows residual heat to be partially converted into electrical energy. Residual heat is a by-product of almost all technological and natural processes, such as in power plants and every household appliance, and the human body as well. It is one of the largest underutilised energy sources in the world - and usually goes completely unused.

Tiny effect

Unfortunately, as useful an effect as it is, it is extremely small in ordinary metals. This is because metals not only have high electrical conductivity, but high thermal conductivity as well, so that differences in temperature disappear immediately. Thermoelectric materials need to have low thermal conductivity despite their high electrical conductivity. Thermoelectric devices made of inorganic semiconductor materials such as bismuth telluride are already being used today in certain technological applications. However, such material systems are expensive and their use only pays off in certain situations. Flexible, non-toxic, organic materials based on carbon nanostructures, for example, are also being investigated for use in the human body.

HB pencil and co-polymer varnish

A team led by Prof. Norbert Nickel at the HZB has now shown that the effect can be obtained much more simply: using a normal HB-grade pencil, they covered over a small area in pencil on ordinary photocopy paper. As a second material, they applied a transparent, conductive co-polymer paint (PEDOT: PSS) onto the surface.

What transpires is that the pencil traces on the paper deliver a voltage comparable to other far more expensive nanocomposites that are currently used for flexible thermoelectric elements. And this voltage could be increased tenfold by adding some indium selenide to the graphite from the pencil.

Poor heat transport explained

The researchers investigated graphite and co-polymer coating films using a scanning electron microscope and spectroscopic methods (Raman scattering) at HZB. “The results were very surprising for us as well,” explains Nickel. “But we have now found an explanation of why this works so well: the pencil deposit left on the paper forms a surface characterised by unordered graphite flakes, some graphene, and clay. While this only slightly reduces the electrical conductivity, heat is transported much less effectively.”

Outlook: Flexible Components printed right on paper

These simple constituents might be able to be used in the future to print thermoelectric components onto paper that are extremely inexpensive, environmentally friendly, and non-toxic. Such tiny and flexible components could also be used directly on the body and could use body heat to operate small devices or sensors.

To the publication in ACS Appl. Mater. Interfaces (2018): "Fine Art of Thermoelectricity", Viktor Brus, Marc A. Gluba, Joerg Rappich, Felix Lang, Pavlo Maryanchuk, and Norbert H. Nickel.

DOI: 10.1021/acsami.7b17491

The work has received the Editors' Choice Award from the American Chemical Society (ACS) and is now available to all readers via Open Access.

 

Contact to the Expert:

Helmholtz-Zentrum Berlin für Materialien und Energie

Prof. Dr. Norbert Nickel
Institute Silicon Photovoltaics
Tel.: (030) 8062-41301
Fax: (030) 8062-41333
Email: nickel(at)helmholtz-berlin.de

Press Office:

Dr. Antonia Rötger
Tel.: (030) 8062-43733
Fax: (030) 8062-42998
Email: antonia.roetger(at)helmholtz-berlin.de

  • LinkedInshare0
  • Facebookshare0
  • WhatsAppshare0
  • E-Mail
  • © WISTA Management GmbH
  • Legal Notice
  • Privacy Policy
  • Contact
  • Career
  • Press
  • Social Media Guide
Member of:
Zukunftsorte Logo